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3-D EM Scattering and Inverse Scattering by
Anisotropic Objects Straddling Multiple Planar

Uniaxial Layers With a 2-D Locally Rough Surface
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Abstract— In this article, both the electromagnetic (EM)
forward and inverse scattering by 3-D arbitrary anisotropic
scatterers straddling multiple planar uniaxial layers covered by a
2-D locally rough surface are discussed. In the forward scattering,
the 3-D electric field integral equation (EFIE) is formulated
and the dyadic Green’s functions (DGFs) are evaluated based
on the transmission-line analogy method and the buried object
approach (BOA) to account for the EM wave reflection in
multiple planar layer boundaries and its scattering from the
rough surface. The additional computational cost caused by
the rough surface is theoretically analyzed. In the full-wave
inversion (FWI), the discretized data equation which is assembled
from the total fields solved from the forward EFIE and the DGFs
including the rough surface influence is solved by the variational
Born iterative method (VBIM). Several numerical examples are
presented to verify the computation accuracy and the additional
time and memory cost caused by the rough surface in the forward
scattering and to testify to the necessity to include the rough
surface in inverse scattering.

Index Terms— 3-D inverse scattering, anisotropy, buried object
approach (BOA), multilayered media, rough surface.

I. INTRODUCTION

ELECTROMAGNETIC (EM) scattering and inverse scat-
tering are important research branches in the EM com-

munity. They have many applications such as near-surface
detection [1], microwave imaging [2], geophysical prospect-
ing [3], and high-speed circuit design [4].

One of the most important methods to solve EM scattering
and inverse scattering problems is using integral equations.
In the forward scattering, the integral equation is discretized
and the obtained algebraic equation is originally solved by the
method of moments (MoM) [5]. Unfortunately, direct matrix
inverse in the MoM usually has an unaffordable computa-
tion cost [6]. Several fast algorithms have been proposed to
lower both the computation time and memory consumption.
It is usually achieved by the iterative implementation of
matrix–vector multiplication which is often accelerated by
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fast Fourier transform (FFT) or by the decomposition of
near-field and far-field interactions between equivalent current
and Green’s functions. For example, the conjugate gradient
FFT (CG-FFT) [7] is a typical iterative method that trans-
forms the spatial-domain convolution of the equivalent current
and Green’s functions inside the computational domain into
spectral-domain algebraic multiplication. Based on this core
idea, researchers have proposed several improved methods
such as biconjugate gradient-FFT (BCG-FFT) [8] and the
stabilized BCG-FFT (BCGS-FFT) [6]. Compared with MoM,
these improved FFT-based methods are able to lower the
computation time from O(N 3) to O(K N logN ) where K is
the iteration number and memory consumption from O(N 2)

to O(N ). The fast multipole algorithm (FMA) is different
from the FFT-based methods. Its implementation is based
on the decomposition of the computational domain and the
addition theorem [9]. FMA was later further developed into
the multilevel FMA (MLFMA) [10], [11] in which the domain
decomposition and addition theorem are implemented at dif-
ferent levels. In the adaptive integral method (AIM) [12],
the MoM matrix is decomposed into a sparse near-field part
and a dense far-field part whose multiplication with a vector
fortunately can be accelerated by FFT.

In EM inverse scattering, due to the intrinsic nonlinearity
and ill-posedness, the model parameters of the scatterers are
always obtained by iteratively minimizing the least-square
cost function with a penalty term. In this process, the
aforementioned forward scattering methods are usually called
several times. The popular full-wave inversion (FWI) methods
mainly include Born-type methods, contrast source inver-
sion (CSI), subspace-based optimization method (SOM), and
their hybridization. In the Born-type methods, the nonlinear
EM scattering data equation is linearized by replacing the total
fields inside the computational domain in the current iteration
with those computed in the last iteration. The major difference
among these Born-type methods is that the Born iterative
method (BIM) [13] directly updates the model parameters
while the variational BIM (VBIM) [14] updates their variations
in each iteration. In the distorted BIM (DBIM) [15], Green’s
functions of the background medium are also updated in each
iteration. CSI is different from Born-type methods since its
cost function includes not only the mismatch in the data
equation but also the mismatch in the state equation [16], [17].
The contrast and the contrast source are alternatively updated
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until the total error is minimized. SOM is similar to CSI.
However, the minimization is carried out in a subspace of the
induced current [18], [19]. In addition, there are also some
hybrid methods combining two of these inversion approaches.
For example, in [20], the DBIM and SOM are combined to
reach a faster convergence speed than the pure DBIM. One
should note that although the aforementioned forward methods
have been applied to the computation of EM scattering by
3-D objects with large electrical sizes [21], [22], [23], by 3-D
objects with dielectric anisotropy [24], [25], [26], [27], [28],
[29], and by 2-D or 3-D objects buried in layered media [26],
[27], [28], [29], [30] and the inverse methods have been
applied to the reconstruction of 2-D or 3-D objects [30],
[31], 2-D or 3-D objects buried in layered media [28], [29],
[32], [33], and anisotropic objects [28], [29], [34], [35],
the background medium is merely homogeneous or planarly
layered and the scatterers are restricted inside one single planar
layer in most situations. However, in practical applications of
EM inversion, e.g., mine detection [36] and subsurface sensing
by ground-penetrating radar [37], the scenario in which the
background medium is planarly multilayered but with a locally
rough surface and the scatterers are placed across several
subsurface planar layers is almost inevitable.

The major influence of the rough surface is the compu-
tation of 3-D dyadic Green’s functions (DGFs). For a purely
planarly multilayered medium, 3-D DGFs are evaluated by the
Sommerfeld integration [38]. When the locally rough surface
is present, one of the commonly used numerical methods
to account for its EM scattering effect is using the buried
object approach (BOA) [39]. Its basic idea is that the 2-D
rough surface is decomposed into several independent 3-D
objects which are treated as scatterers embedded inside the top
planar layer and the second one. Then the integral equation
involving the DGFs in purely planar layers is adopted to
compute the scattering fields generated by the rough surface,
which are later added to the layered medium DGFs calculated
by the Sommerfeld integration to form the final DGFs of the
background medium with a rough surface. Compared with
other methods such as the Kirchhoff approximation [40] and
the small perturbation method [41], BOA can adapt to rough
surfaces of any scale. Therefore, the studies of both forward
and inverse scattering by subsurface 3-D objects beneath
locally rough surfaces have been accomplished based on the
BOA [42], [43]. However, most of these previous works only
deal with the half-space model or a limited number of planar
layers beneath the rough surface. The subsurface 3-D objects
are only placed inside one single planar layer. Meanwhile,
the anisotropy of either the background medium or the 3-D
scatterers has never been considered.

Therefore, in this article, we deal with the EM forward
scattering from and FWI of anisotropic objects straddling
multiple subsurface planar uniaxial layers covered by a 2-D
locally rough surface. Compared with previous works regard-
ing 3-D EM scattering and inverse scattering based on the
BOA [42], [43], our work has the following new contributions.
1) There are several planar layers beneath the rough surface
while only the half-space model is considered in previous
works. Therefore, the 3-D BOA must be correctly combined

Fig. 1. Configuration of the EM scattering and inverse scattering model for
an arbitrary anisotropic 3-D objects buried in a multilayered uniaxial medium
with a locally rough surface. Either the 3-D objects or the computational
domain D are allowed to straddle multiple planar layers.

with multilayered DGFs. 2) Both the layered background
medium and the 3-D scatterers are anisotropic. Meanwhile,
the 3-D scatterer with arbitrary anisotropy straddles multiple
planar layers with a 2-D rough surface. Such an EM scattering
scenario will make the implementation of BOA more difficult
than that only for an isotropic half-space model. 3) Totally,
12 anisotropic parameters of the 3-D scatterers beneath a
rough surface are simultaneously reconstructed by VBIM.
4) The computational cost and inversion accuracy for the
scenarios with and without the rough surface are compared
in detail.

The rest of this article is organized as follows. In Section II,
a detailed description of the theory is presented. In the forward
model, the mathematical formulation of the electric field
integral equation (EFIE) for 3-D anisotropic objects straddling
planarly multilayered uniaxial medium with a rough surface
is given. Then the BOA is used to determine the DGFs of
the background medium. The additional computational cost
caused by the rough surface is theoretically analyzed. The
inversion by VBIM is simply mentioned. In Section III,
we verify the forward computation results by comparing
them with the numerical simulations of the finite element
method (FEM) by the commercial software COMSOL. The
computational cost for the EM scattering scenarios with and
without the rough surface is quantitatively compared. The
related reasons are analyzed. In Section IV, several numerical
inversion experiments based on VBIM are carried out to
confirm the necessity in consideration of the rough surface.
Finally, in Section V, conclusions are drawn and discussions
are presented.

II. METHODS

The objective of this work is to solve the EM scattering
and inverse scattering problems of the 3-D anisotropic objects
placed across multiple planar uniaxial layers which are covered
by a 2-D locally rough surface. Meanwhile, the computa-
tional cost for the scattering scenarios with and without the
rough surface is compared. The typical configuration is shown
in Fig. 1. The principal axis of the layered background medium
is in the ẑ-direction and its permeability is the same as that
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of the free space. The relative permittivity and conductivity
tensors of the mth layer are written as

ε
m
b = diag

{
εm

11, ε
m
22, ε

m
33

}
, σ

m
b = diag

{
σ m

11, σ
m
22, σ

m
33

}
(1)

where εm
11 = εm

22, σ m
11 = σ m

22, and the subscript b means the
background. The relative complex permittivity tensor of the
mth layer is written as

ϵ
m
b = ε

m
b +

σ
m
b

jωε0
(2)

where ω is the angular frequency of the EM wave. The relative
permittivity and conductivity tensors of the inhomogeneous
scatterer are written as

εs =

 εs
11 εs

12 εs
13

εs
21 εs

22 εs
23

εs
31 εs

32 εs
33

, σ s =

 σ s
11 σ s

12 σ s
13

σ s
21 σ s

22 σ s
23

σ s
31 σ s

32 σ s
33

 (3)

where εs
pq = εs

qp and σ s
pq = σ s

qp with p, q = 1, 2, and 3. This
symmetry is ubiquitous in nature [44]. The relative complex
tensor permittivity of the scatterer is written as

ϵs = εs +
σ s

jωε0
. (4)

A. 2-D Rough Surface Model

In this work, the 2-D rough surface having the horizontal
size L x × L y is generated from the Gaussian spectrum [45]

W
(
Kx , K y

)
=

lx lyh2

4π
exp

[
−

l2
x K 2

x + l2
y K 2

y

4

]
(5)

where Kx = 2πx/L x and K y = 2πy/L y are the spatial
frequencies in the x̂- and ŷ-directions, respectively. lx and ly

are the correlation lengths in x̂- and ŷ-directions, respectively.
The parameter h represents the root mean square (rms) height
of the rough surface. Note we let lx = ly in the whole work
since only the isotropic rough surface is considered.

B. EM Forward Scattering Model

As shown in Fig. 1, for the 3-D scatterer straddling multiple
planar layers and the transceivers placed in the first layer above
the rough surface, the EM forward scattering is formulated in
the framework of EFIE and expressed via the state equation by

Einc(r)=Etot(r)− jωε0

∫
D

G
i i

EJ
(
r, r′

)
· ϵb(r′)χ

(
r′
)
Etot(r′)dr′

(6)

where Einc is the incident electric field evaluated inside the
computational domain D when the 3-D scatterer is absent
while Etot is the total electric field when the scatterer is
present. ϵb is the complex relative permittivity of the back-
ground medium inside D which, however, can take different
values when r′ locates in different layers. The superscript i i

of G
i i

EJ(r, r′) means both the source point r′ and the field
point r of the DGF locate in the inversion domain D. The
contrast function χ is defined as

χ(r) =
[
ϵ(r) − ϵb(r)

][
ϵb(r)

]−1
(7)

where ϵ is the complex relative permittivity of the inhomoge-
neous 3-D scatterer. Before we discretize (6) and solve for Etot
using BCGS [26] from it, Einc is first obtained through

Einc(r) =

∫
G

i t

EJ
(
r, r′

)
· J(r′)dr′ (8)

where the superscript i t of the DGF G
i t

EJ means the source
point r′ locates in the transmitter domain in the first layer and
the field point r locates in the inversion domain D. Once Etot is
obtained from (6), the scattered fields Esct and Hsct are solved
by the data equations which are expressed as

Esct(r) = jωε0

∫
D

G
ri

EJ
(
r, r′

)
· ϵb(r′)χ

(
r′
)
Etot(r′)dr′ (9a)

Hsct(r) = jωε0

∫
D

G
ri

HJ
(
r, r′

)
· ϵb(r′)χ

(
r′
)
Etot(r′)dr′ (9b)

where the superscript ri of the DGFs G
ri

EJ and G
ri

HJ means the
source point r′ locates in the inversion domain D and the field
point r locates in the receiver domain in the first layer.

C. Computation of G
i t

EJ, G
i i

EJ, G
ri

EJ, and G
ri

HJ

In the aforementioned formulas (6)-(9), four types of DGFs

including G
i t

EJ, G
i i

EJ, G
ri

EJ, and G
ri

HJ are used. We first discuss
the EM scattering scenario in which the first layer boundary
is flat and the background medium is purely planarly layered.
In this situation, the four DGFs can be evaluated using the
transmission-line analogy method. Briefly speaking, the spher-
ical wave excited by the 3-D dipole is first decomposed into a
series of plane waves in the spectral domain. The transmission
and reflection in different layer boundaries of each plane
wave component are then computed. Finally, the summation
of all the plane waves at the receiver point is performed to
obtain the DGFs. The specific spectral expressions are listed
in Appendix. For more detailed discussions, readers can refer
to [38]. Now, we assume there are totally Nt transmitters
and Nr receivers. The inversion domain D is discretized into
N = Nx × Ny × Nz voxels. For G

i t

EJ, G
ri

EJ, and G
ri

HJ,
we need to compute Nt × N , Nr × N , and Nr × N DGFs,
respectively. Of course, each DGF tensor actually includes
nine components. Special attention should be paid to the

computation of G
i i

EJ. Since the inversion domain D straddles

multiple planar layers, G
i i

EJ no longer can be decomposed
into “plus” and “minus” parts in the vertical ẑ-direction [26].
However, in light of its spatial shift invariance in the horizontal
xy plane, we can still reduce the computational cost for the

evaluation of G
i i

EJ and the integration in (6). It is rewritten as

G
i i

EJ
(
r, r′

)
= G

i i

EJ(x − x ′, y − y′, z, z′). (10)

As a result, we only need to compute N 2
z Nx Ny instead of N 2

DGFs for G
i i

EJ. On the other hand, the integration in (6) is
actually a 2-D convolution in the xy plane plus an arithmetic
accumulation in the ẑ-direction. Therefore, the 2-D FFT can
be used to accelerate the convolution. The computation time
is lowered from O(N 3) to O(N 3

z Nx Ny log(Nx Ny)).
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Now, let us discuss the computation of the aforemen-
tioned four DGFs when the 2-D locally rough surface is
present. In this situation, the transmission-line analogy method
presented in [38] is no longer valid due to EM scattering
caused by the rough surface. Simultaneously, the spatial shift

invariance in the xy plane for G
i i

EJ becomes invalid and we
need to compute N 2 DGFs. Meanwhile, the EFIE in (6) can
only be solved by the original MoM and the computation
time is O(N 3). To account for the rough surface scatter-
ing, we adopt the BOA in which the 2-D rough surface
shown in Fig. 1 is treated as the combination of a series
of 3-D scatterers which are embedded on both sides of the
z = z1 plane and these scatterers are defined as BOA objects.
The integral equation is then formed and the DGFs are
obtained. Although the BOA has been adopted in previous
works [39], [42], [43], they are only for half-space models.
We will apply the BOA to multiple uniaxial layers in this work.
As shown in Fig. 1, the dielectric parameters of BOA objects
embedded in different planar layers are different. The relative
permittivity and conductivity of those lie in the z < z1 half-
space and those lying in the region between the interfaces
of z = z1 and z = z2 are ε

2
b, σ

2
b, and ε

1
b, σ

1
b, respectively.

Thus, an integral equation method can be adopted to solve
for the total DGFs which include both the transmission and
reflection in the horizontal boundary and the scattering from
those fictitious 3-D objects embedded in the first layer and
the second layer. Here, we follow this procedure to derive the
total DGFs for 3-D multiple planar layers with a 2-D locally

rough surface. We take G
ri

EJ as the example. The other three
DGFs can be derived in the same procedure. For convenience,

the subscript of G
ri

EJ is dropped.

The DGF G
ri
(r, r′) can be expressed as the summation of

two components

G
ri(

r, r′
)

= G
ri

0

(
r, r′

)
+ G

ri

s

(
r, r′

)
(11)

where G
ri

0 (r, r′) is the DGF contributed by the 3-D planarly

multilayered medium, and G
ri

s (r, r′) is contributed by the
scattered EM fields generated by the 2-D rough surface. The

details of G
ri

0 (r, r′) can be found in Appendix. To solve for

G
ri

s (r, r′), we first formulate the state equation to describe the
EM scattering by the equivalent 3-D objects of the 2-D rough
surface embedded in the planarly multilayered medium. It is
written as

G
bo,i

0

(
r′′, r′

)
= G

bo

t

(
r′′
)
− jωε0

∫
RS

G
bo,bo

0

(
r′′, r′′

)
×
[
χ

bo
(r′′)G

bo

t

(
r′′
)]

dr′′ (12)

where G
bo,i

0 represents the incident field inside the ficti-
tious 3-D buried object regions when the 2-D rough surface
is absent. The source point r′ locates inside the inversion
domain D while the field point r′′ locates inside the buried

objects of the rough surface, as shown in Fig. 1. G
bo

t represents
the total field inside the 3-D buried object regions when the

2-D rough surface is present. G
bo,bo

0 is the DGF in the planarly
multilayered medium when both the source point and the
field point are inside the buried object regions. The subscript
RS denotes the rough surface. χ

bo
represents the dielectric

contrast of the 3-D buried objects of the 2-D rough surface
with respect to the planarly multilayered background medium
and is defined as

χ(r′′) =

{
ϵ

2
b − ϵ

1
b, r′′

∈ layer 1

ϵ
1
b − ϵ

2
b, r′′

∈ layer 2.
(13)

Now, we discretize the fictitious 3-D buried objects of the
2-D rough surface into Nb cubic voxels and set r′′ at the center
of each voxel. If its volume is small enough, (12) can be
discretized and represented in a matrix form

KG = G0 (14)

where

K =

[
I − jωε0G

bo,bo

0

(
r′′

m, r′′

n

)
χ

bo
(r′′

n)

]
∆Vb ∈ C(3Nb,3Nb)

(15a)

G =

[
G

bo

t

(
r′′

n

)]
∈ C(3Nb,3) (15b)

G0 =

[
G

bo,i

0

(
r′′

m, r′
)]

∈ C(3Nb,3) (15c)

in which 1Vb is the volume of the discretized cubic voxel,
and m, n ∈ [1, Nb] are the indexes of the voxels. For the
matrices K, G, and G0, different components of a DGF are
arranged in different blocks. Let us take the first column of G
as an example. It is composed of three blocks which are

corresponding to the x̂ x̂ , ŷ x̂ , and ẑx̂ components of G
bo

t (r′′
n).

Each block has the dimensions of Nb × 1 for which n increases

from 1 to Nb. We can solve for the discretized G
bo

t from (14)

using BCGS. Then the discretized G
ri

s (r, r′) can be obtained
using the following data equation:

G
ri

s

(
r, r′

)
=

Nb∑
n=1

jωε0G
r,bo

0

(
r, r′′

n

)[
χ

bo
(r′′

n)G
bo

t

(
r′′

n

)]
1Vb (16)

where G
r,bo

0 is the planarly multilayered DGF when the source
point r′′ is inside the 3-D buried objects of the 2-D rough
surface, and the field point r is at the receiver position.

Finally, G
ri

in (11) is obtained to account for the 3-D uniaxial
layered background medium with a 2-D rough surface. From
the above derivations and discussions, we can see that the
computation of DGFs when the rough surface is present is
much more time-consuming compared with the situation when
the rough surface is replaced with a planar one. This will
be verified in Section III. Another important issue is the

singularity of G
bo,bo

0 in (15a) when r′′
m = r′′

n . This is discussed
in Appendix.

D. EM FWI Model

In the inversion, the complex contrast function χ(r′) distri-
bution inside the computational domain D shown in Fig. 1 is
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Fig. 2. Two-layer arbitrary anisotropic sphere with the inner radius
r1 = 0.1 m and the outer radius r2 = 0.2 m embedded in a six-layer uniaxial
background medium with a locally rough surface. The sphere straddles three
planar layers.

reconstructed from the scattered fields Esct and Hsct recorded
at the receiver array. The problem is actually to search for the
optimized χ in (9) from measured data. In this work, we follow
the similar VBIM procedure given in [28] to solve for the
12 unknown model parameters listed in (3). Since there is no
difference between the assembly of the sensitivity matrix and
the implementation of VBIM when the rough surface is present
or absent and when the scatterers are placed inside one layer
or across multiple layers as long as the DGFs are obtained,
the computational complexity of the inversion process remains
the same and we will not repeat the VBIM procedure here.
Readers can refer to [28] for more details.

III. FORWARD VALIDATION

In this section, we validate the correctness of the forward
EM scattering solver for 3-D arbitrary anisotropic scatterers
placed across multiple subsurface planar layers with a locally
rough surface by comparing the BCGS results with the FEM
computation via the commercial software COMSOL. Mean-
while, we also compare the computational cost of the forward
BCGS solver when the rough surface is present or absent. All
the numerical simulations are performed on a workstation with
a 44-core Intel Xeon 6161 2.2-G CPU and 1024-GB RAM.
As shown in Fig. 2, a two-layer sphere with an inner radius
r1 = 0.1 m and an outer radius r2 = 0.2 m straddles three
planar layers of the background medium. The center of the
sphere locates at (0, 0, 0) m. The interface between the top
layer and the second layer is a 2-D locally Gaussian random
rough surface with the rms height h = 0.1 m and correlation
lengths lx = ly = 0.05 m. Its horizontal sizes are L x ×

L y = 0.6 × 0.6 m. The background layer boundaries locate
at z = −0.8 m, z = −0.6 m, z = 0.0 m, z = 0.1 m,
and z = 0.6 m, respectively. The top layer is air and the
permeability values of all the layers are the same as that of
free space µ0. Therefore, the dielectric parameters of the six
background layers are

ε
1
b = diag{1.0, 1.0, 1.0}, σ

1
b = diag{0, 0, 0} mS/m (17a)

ε
2
b = diag{3.5, 3.5, 4.0}, σ

2
b = diag{1, 1, 2} mS/m (17b)

ε
3
b = diag{2.0, 2.0, 1.5}, σ

3
b = diag{1, 1, 2} mS/m (17c)

ε
4
b = diag{2.5, 2.5, 1.8}, σ

4
b = diag{3, 3, 2} mS/m (17d)

ε
5
b = diag{3.0, 3.0, 2.0}, σ

5
b = diag{4, 4, 3} mS/m (17e)

ε
6
b = diag{4.0, 4.0, 2.5}, σ

6
b = diag{2, 2, 4} mS/m. (17f)

The inner sphere has the dielectric parameter

εs1 = diag{3.0, 3.0, 4.0}, σ s1 = diag{2, 2, 6} mS/m (18)

and the outer sphere has the dielectric parameter

εs2 = diag{3.5, 3.5, 2.0}, σ s2 = diag{5, 5, 2} mS/m. (19)

However, these are only uniaxial anisotropic. The principal
axes of both the inner sphere and the outer sphere are supposed
to align with the vertical ẑ-axis. In practice, they may deviate
away. Therefore, in this work, we rotate the principal axes
according to (3) of [46] to generate symmetrical full tensors.
The rotation angles of inner sphere and outer sphere are
φ1 = 30◦, φ2 = 120◦ and φ1 = 90◦, φ2 = 60◦, respectively.
Consequently, the dielectric parameters of the inner sphere
become

ε
′

s1 =

 3.75 0.433 0.0
0.433 3.25 0.0
0.0 0.0 3.00

 (20a)

σ
′

s1 =

 5.00 1.732 0.0
1.732 3.00 0.0
0.0 0.0 2.00

 mS/m (20b)

and those of the outer sphere become

ε
′

s2 =

 3.219 0.162 −0.562
0.162 3.406 0.325

−0.562 0.325 2.375

 (21a)

σ
′

s2 =

 4.438 0.325 −1.125
0.325 4.813 0.650

−1.125 0.650 2.750

 mS/m. (21b)

The source is a unit electric dipole polarized at the direction
of (1, 1, 1) and locates at (xs, ys, zs) = (0, 0, −1.3) m. The
operation frequency is 1 GHz. The scattered fields are recorded
by a 6 × 6 receiver array locating at the z = −1.3 m xy plane.
The increment intervals between two adjacent receivers in
both the x̂- and ŷ-directions are 0.1 m. The coordinate of the
first receiver is (−0.25, −0.25, −1.3) m. The computational
domain D enclosing the two-layer sphere has the dimensions
of 0.44 × 0.44 × 0.44 m and is discretized into 44 × 44 ×

44 voxels. The size of each voxel is 1x × 1y × 1z = 0.01 ×

0.01 × 0.01 m.
Now, let us compare the incident electric fields and the

total electric fields inside the computational domain D and the
scattered fields at the receiver array when the rough surface is
present or absent. We choose 4 × 4 × 4 uniformly distributed
sampling points with the spatial step of 0.1 m inside the
domain D for comparisons. As shown in Fig. 3, all three field
components in these 64 sampling points show good matches
between the BCGS results and FEM results. The relative error
is 4.89% when the rough surface is present but becomes 4.02%
when it is absent. We then compare the total electric fields in
the same sampling points. As shown in Fig. 4, their variation
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Fig. 3. Comparisons of the incident electric fields inside the computational
domain enclosing the two-layer sphere computed by the BCGS and simulated
by FEM when the rough surface is present or absent. (a) Real part of E x

inc .
(b) Imaginary part of E x

inc . (c) Real part of E y
inc . (d) Imaginary part of E y

inc .
(e) Real part of Ez

inc . (f) Imaginary part of Ez
inc .

trends solved by BCGS and FEM also show good matches.
The relative errors are 4.99% and 5.80% for the rough surface
and flat surface scattering, respectively. Finally, we separately
select four representative components of the scattered electric
fields and the scattered magnetic fields to further verify the
computation accuracy of our BCGS method. The scattered
electric fields and magnetic fields at the receiver array are
computed by (9) after the total electric fields are obtained.
Fig. 5(a)–(d) shows the comparisons of several representative
components of the scattered electric fields, and Fig. 5(e)–(h)
shows the comparisons of representative scattered magnetic
components. We can see that in most receivers the scattered
fields solved by our BCGS method match well with the FEM
results no matter for the cases with or without the rough
surface although in a few receivers there still exist slight errors.
Note the imaginary parts of E x

sct , E y
sct , H x

sct , and H y
sct have

similar matches and are not shown here due to the space
limitation. The relative errors of scattered electric fields and
scattered magnetic fields are 3.89% and 4.25%, respectively,
when the rough surface is present while they become 3.41%
and 3.57%, respectively, when the rough surface is replaced
with a flat one. The above comparisons indicate that our BCGS
method can reliably solve the 3-D EM scattering problems for
arbitrary anisotropic scatterers buried in a planarly uniaxial
anisotropic layered medium with a locally rough surface.

We then compare the computational cost of the for-
ward solver when the rough surface is present or absent.

Fig. 4. Comparisons of the total electric fields inside the computational
domain enclosing the two-layer sphere computed by the BCGS and simulated
by FEM when the rough surface is present or absent. (a) Real part of E x

tot .
(b) Imaginary part of E x

tot . (c) Real part of E y
tot . (d) Imaginary part of E y

tot .
(e) Real part of Ez

tot . (f) Imaginary part of Ez
tot .

TABLE I
MEMORY COST (GB) OF THE FORWARD SOLVER FOR DIFFERENT

COMPUTATIONAL VARIABLES AND STAGES

TABLE II
COMPUTATION TIME OF THE FORWARD SOLVER FOR DIFFERENT

COMPUTATIONAL VARIABLES AND STAGES

The memory cost is listed in Table I, and the computation
time is listed in Table II. An intuitive feeling is that the
computational cost of the forward solver when we consider
the rough surface scattering is much higher compared with
the situation only dealing with the planarly multilayered
background medium. For example, for the computation of

G
i t

EJ and Einc, the forward solver including the rough surface
effect needs up to 1100 times memory more than the solver
for the purely planar background medium. The computation
time discrepancy is also more than 500 times. This is mainly

because the computation of G
i t

EJ for the layered medium with
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Fig. 5. Comparisons of representative scattered electric fields and magnetic
fields at the receiver array computed by the BCGS and simulated by FEM
when the rough surface is present or absent. (a) Real part of E x

sct . (b) Imag-
inary part of E x

sct . (c) Real part of Ez
sct . (d) Imaginary part of Ez

sct . (e) Real
part of H y

sct . (f) Imaginary part of H y
sct . (g) Real part of H z

sct . (h) Imaginary
part of H z

sct .

a rough surface needs to solve integral equations, e.g., (14) in
this work, which increases both the computation time and
memory cost. The discrepancy for the computational cost

of G
i i

EJ between the situations with and without the rough
surface is almost the most significant one among the four items
listed in Tables I and II. There are two reasons for this big

discrepancy. The first one is that the computation of G
i i

EJ still
needs to solve the integral equations. The second reason is

that the dimension of G
i i

EJ for the purely planar layers is much
smaller than that for the rough surface due its shift invariance
in the xy plane. This also influences the computational cost
of the BCGS solver. As shown in Tables I and II, the BCGS
needs much more time and memory when EM scattering from
the rough surface is considered. When the rough surface is
present, the BCGS directly uses MoM. In contrast, when
the rough surface is replaced with a flat one, BCGS uses
FFT acceleration in the xy plane. One should note that

Fig. 6. Configuration of the inversion model with a 3-D homogeneous
but arbitrary anisotropic “U”-shaped scatterer buried beneath the 2-D rough
surface. The scatterer straddles the second and third layers. Its geometry sizes
are annotated in the figure.

the computation time of the scattered fields has no obvious
difference for the rough surface and flat surface scenarios. This

is because some auxiliary matrices such as G
bo,bo

0 used to solve

for G
ri

in the integral equations have been used to compute

G
i t

and G
i i

and thus are directly ready when we compute G
ri

.
The last important point that must be mentioned here is the
comparison to the computational cost of the commercial soft-
ware COMSOL. Numerical experiments show that COMSOL
needs 10.1 min to accomplish the simulation when the rough
surface is absent but 11.2 min when the rough surface is
present. It consumes 57.2-GB memory when the rough surface
is absent but 66.1-GB memory when the rough surface is
present. Compared with the data listed in Tables I and II, the
FEM adopted by COMSOL definitely outperforms our BCGS
when the rough surface is present. The major reason is that

the evaluation of G
i i

EJ takes too much resource when BOA is
adopted.

IV. INVERSION ASSESSMENT

In this section, we assess the reconstruction ability of the
VBIM solver for a 3-D arbitrary anisotropic object straddling
multiple uniaxial planar layers beneath a 2-D rough surface.
Meanwhile, the necessity to consider the rough surface in
the inversion is validated. In other words, we quantitatively
compare the reconstruction errors when the inversion model
only considers the flat surface and when it includes the rough
surface if the true model includes the rough surface. As shown
in Fig. 6, a “U”-shaped anisotropic scatterer is placed across
the second and third layers. Its 12 known parameters will be
reconstructed simultaneously. The dimensions of the inversion
domain D and the homogeneous scatterer are annotated in
the figure. The true dielectric parameters of the “U”-shaped
scatterer are listed in the second row of Table III. We use
different rms height h values but the same correlation length
lx = ly = 0.1 m to generate different 2-D Gaussian random
rough surfaces. The background medium includes four layers
and the boundary positions locate at z = 0 m, z = 0.5 m,
and z = 1.0 m, respectively. The top layer is air and it is
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Fig. 7. Reconstructed 3-D distribution of 12 anisotropic parameters of the “U”-shaped scatterer straddling two subsurface layers when (a)–(l) noise-free
and (m)–(x) 30-dB noise is added. The same 2-D rough surface is used in the forward and inversion models.

separated from the second layer by the 2-D rough surface.
The other three planar layers are uniaxial anisotropic media
which have the dielectric parameters

ε
2
b = diag{3.0, 3.0, 2.5}, σ

2
b = diag{1, 1, 2} mS/m (22a)

ε
3
b = diag{1.5, 1.5, 1.2}, σ

3
b = diag{2, 2, 1} mS/m (22b)

ε
4
b = diag{2.0, 2.0, 1.5}, σ

4
b = diag{2, 2, 3} mS/m. (22c)

Totally, 8 × 8 transmitters are uniformly placed in a
2.8 × 2.8 m square at z = −0.3 m. The increment between
two adjacent transmitters in both the x̂- and ŷ-directions
is 0.4 m. The coordinate of the first transmitter is (−1.4,
−1.4, −0.3) m. Each transmitter is a unit dipole operating
at 300 MHz and polarized at the direction of (1,1,1). The
scattered fields are recorded by a 9 × 9 receiver array which
locates in the z = −0.2 m plane. The increment between two
adjacent receivers in both the x̂- and ŷ-directions is 0.45 m.
The coordinate of the first receiver is (−1.8, −1.8, −0.2) m.
The inversion domain D enclosing the “U”-shaped scatterer
has the dimensions of 0.6 × 0.4 × 0.6 m and its center locates
at (0, 0, 0.5) m. It is discretized into 30 × 20 × 30 voxels,
and the size of each voxel is 1x = 1y = 1z = 0.02 m. The
measured scattered field data recorded at the receiver array are
simulated by the BCGS forward solver which has been vali-
dated in Section III. The model misfit defined in (16) of [47]
is used to indicate the inversion performance. In addition, the
structural consistency constraint presented in [35] is used to
filter out the background clutter in the inversion.

First, let us validate the inversion performance of the
VBIM solver when the rough surface has large fluctuations.
We set its rms height h = 0.1 m in the forward model.
The exact same rough surface is included in the inversion
model. Fig. 7 shows the reconstructed relative permittivity and
conductivity profiles for both the diagonal and off-diagonal
elements. Fig. 8 shows their 2-D slices in different directions
or positions for both the noise-free and 30-dB noise cases.
Note we add 30-dB white Gaussian noise to the simulated
scattered field data to test the antinoise ability of the VBIM
solver. Here, the noise level is defined according to the
signal-to-noise ratio (SNR) of power. Numerical simulations
show that the VBIM solver takes 17 iterations and 19.5 h
to complete the inversion when noise-free while it takes
seven iterations and 7.6 h to complete the inversion when
30-dB noise is added. We can see that the reconstructed 3-D
shapes of different elements shown in Fig. 7(a)–(l) are close
to the true “U” shape, which is further confirmed by the
good matches between the reconstructed 2-D slices and the
white dotted boxes shown in Fig. 8(a)–(l). In addition, the
mean values of the inverted dielectric parameters listed in
the third row of Table III are also close to their true values.
The corresponding model misfits are listed in the second row
of Table IV. When 30-dB noise is added to the scattered field
data, the reconstructed shapes have some distortion, as shown
in Figs. 7(m)–(x) and 8(m)–(x). Especially the protrusions are
severely distorted. On the other hand, the mean values of the
reconstructed 12 dielectric parameters listed in the fourth row
of Table III show obvious larger discrepancies with respect to
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Fig. 8. Reconstructed xz slices of the relative permittivity profiles for diagonal elements at y = 0 when (a)–(c) noise-free and (m)–(o) 30-dB noise is added.
Reconstructed yz slices of the relative permittivity profiles for off-diagonal elements at x = −0.17 m when (d)–(f) noise-free and (p)–(r) 30-dB noise is
added. Reconstructed xy slices of the conductivity profiles for diagonal elements at z = 0.25 m when (g)–(i) noise-free and (s)–(u) 30-dB noise is added.
Reconstructed xy slices of the conductivity profiles for off-diagonal elements at z = 0.45 m when (j)–(l) noise-free and (v)–(x) 30-dB noise is added. The
same 2-D rough surface is used in the forward and inversion models. The white dotted boxes denote true shapes.

TABLE III
TRUE AND MEAN RECONSTRUCTED DIELECTRIC PARAMETER VALUES OF THE ANISOTROPIC “U” SHAPE IN THE RECONSTRUCTION

their true values compared with those obtained when noise-
free. This is also confirmed by the larger model misfit values
listed in the third row of Table IV. Notwithstanding, both the
reconstructed general “U” shape and the inverted diagonal
elements of the relative permittivity are still close to their
ground truths.

Then, we perform a series of numerical experiments to
testify to the necessity to include the rough surface in the
inversion. We just choose three representative components,
i.e., ε11, σ22, and σ23 show the reconstructed slices in Fig. 9.
For convenience, we use htrue to denote the rms height of the
rough surface in the true model and hinv to denote its value
used in the inversion. When they have the same value, the
rough surfaces are also the same in our work. Note when h
becomes zero, the rough surface degenerates into a flat one.
As shown in Fig. 9(a)–(c), (g)–(i), and (m)–(o), when the
surface shapes used in the inversion are the same as their
true shapes, the reconstructed profiles are close to each other,

no matter how large the fluctuations of the rough surfaces
are. This is further confirmed by the corresponding mean
reconstructed parameter values and the model misfit values
listed in Tables III and IV. That is to say, the VBIM solver
is reliable as long as the rough surface is precisely modeled
in the inversion process. The influence of the rough surface
is only manifested in the computational cost of the forward
BCGS solver. Its effect on the inversion results is negligible.
Now, let us discuss the inversion performance if we neglect
the rough surface in inversion. In other words, we only use the
flat surface in the inversion but the true model has a fluctuation
one. Fig. 9(d)–(f) and (j)–(l) shows the VBIM inversion
results when htrue = 0.1 m and htrue = 0.02 m, respectively.
Obviously, larger rms height leads to larger distortion of the
reconstructed profiles, which is also confirmed by the corre-
sponding obtained mean values and the model misfit values
listed in Tables III and IV. When the rms height is 0.02 m,
we can still discern the basic shapes of the reconstructed
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TABLE IV
MODEL MISFIT VALUES (%) FOR THE RECONSTRUCTION OF THE ANISOTROPIC “U” SHAPE

Fig. 9. Reconstructed xz slices at y = 0 for three representative components
when (a)–(c) htrue = 0.1 m and hinv = 0.1 m, (d)–(f) htrue = 0.1 m
and hinv = 0.0 m, (g)–(i) htrue = 0.02 m and hinv = 0.02 m,
(j)–(l) htrue = 0.02 m and hinv = 0.0 m, and (m)–(o) htrue = 0.0 m and
hinv = 0.0 m, respectively. Only the noise-free results are shown here. The
white dotted boxes denote true shapes.

profiles, although they are even worse than the profiles from
the inversion with 30-dB noise, as shown in Fig. 8(m)–(x).
However, when the rms height increases to 0.1 m, the “U”
shape is no longer discernible, as shown in Fig. 9(d)–(f).

Finally, it should be emphasized that the model misfits
of the inverted permittivity diagonal elements are obviously
smaller than those of off-diagonal elements. This is due to
two reasons. The first one is that the diagonal elements of
the relative permittivity tensor are larger than the off-diagonal
elements. As a result, the VBIM solver is more sensitive
to the variations in the diagonal elements. The second one

is that the off-diagonal elements of the relative permittivity
tensor of the background medium are zero. Therefore, the
denominators in the model misfit computation are rather small
(see (16) of [47]), which causes large model misfit values.
Larger model misfits of the conductivity compared with those
of the permittivity listed in Table IV are also caused by similar
reasons.

V. CONCLUSION

In this article, we solve the 3-D forward and inverse
scattering problems for arbitrary anisotropic objects straddling
multiple planar uniaxial layers which are covered by a 2-D
locally rough surface. To account for the EM scattering
from the rough surface, we use the BOA to divide the 2-D
rough surface into several fictitious 3-D scatterers embedded
inside the first planar layer and the second one. Then the
integral equation method is adopted to solve for the DGFs
of the uniaxial anisotropic background medium. Finally, the
BCGS is used to solve the EM scattering from the subsurface
3-D anisotropic objects and VBIM is used to simultaneously
reconstruct multiple anisotropic parameters of the scatterer.
The computation precision of the forward BCGS solver is
authenticated by comparing its solutions of incident fields,
total fields inside the computational domain, and the scat-
tered fields at the receiver array with the FEM simulation
results. The VBIM solver is also tested to simultaneously
reconstruct 12 anisotropic parameters of a subsurface 3-D
scatterer which straddles multiple planar layers beneath a
rough surface and has an electrical size of less than one
wavelength.

On the other hand, we have studied the influence of the
rough surface on both the forward and inverse scattering
computation. In the forward process, the rough surface leads
to significantly increased memory cost and computation time.
There are two reasons. The first one is that acquiring DGFs
when the rough surface is present needs solving additional
integral equations while only the transmission-line analogy
method is adopted when the rough surface is absent. The sec-
ond reason lies in the implementation of the BCGS algorithm.
When the rough surface is present, the shift invariance of
the DGFs in the horizontal xy plane becomes invalid. This
increases both the implementation time and memory of the
BCGS solver. One feasible way to lower the computational
cost for the evaluation of DGFs is replacing the volume
integration with the surface integration in BOA. Note each
fictitious buried object to simulate the rough surface is actually
a homogeneous one. Therefore, we can directly discretize
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its surface and adopt the surface integral equation instead
of the volume integral equation to significantly reduce the
unknowns. Of course, this improved method will be left as
our future work and will not be discussed in detail here. In the
inversion process, the necessity to include the rough surface
is testified to. It is found that the reconstructed 12 anisotropic
dielectric parameters show little difference for different surface
fluctuations as long as the accurate rough surface of the true
model is used in the inversion, even when the rough surface
has a large rms value. However, the reconstructed profiles
show obvious distortions if a flat surface replaces the rough
one in the inversion.

APPENDIX

The DGFs in a planarly uniaxial multilayered medium
is evaluated based on the transmission-line analogy
method [38]. The spatial-domain DGFs are computed
from the spectral-domain ones based on 2-D inverse Fourier
transforms

GEJ(r, r′) =
1

4π2

∫∫
+∞

−∞

G̃EJ(kρ; z, z′)e− jkρ ·ρdkx dky

(A1a)

GHJ(r, r′) =
1

4π2

∫∫
+∞

−∞

G̃HJ(kρ; z, z′)e− jkρ ·ρdkx dky

(A1b)
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+

(
kx ky

k2
ρ

I h
i −

kx ky

k2
ρ

I e
i

)
ŷ ŷ +
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in which the voltage and current terms are actually the
plane wave harmonics and their expressions can be found
in Section V of [48]. The superscript h stands for the trans-
verse electric (TE) mode, while e stands for the transverse
magnetic (TM) mode. The ϵ′

33 means the permittivity value
is taken from the layer in which the source point r′ locates.

The 2-D inverse Fourier transform in (A1) can be further
simplified by

1
4π2

∫∫
+∞

−∞

cos
sin nξ f̃ (kρ)e− jkρ ·ρdkx dky

=
1

2π

∫
+∞

0
f̃ (kρ)kρdkρ

1
2π

∫ 2π

0

cos
sin nξe− jkρρ cos(ξ−φ)dξ

= (− j)n cos
sin nφ ·

1
2π

∫
+∞

0
f̃ (kρ)Jn(kρρ)kρdkρ (A3)

which is the famous Sommerfeld integration, and Jn is the
Bessel function of the nth order. ξ is the angle between the
vector kρ = x̂kx + ŷky and the x̂-axis, while φ is the angle
between the vector ρ = x̂(x − x ′) + ŷ(y − y′) and the x̂-axis.
The fast numerical computation of the Sommerfeld integration
can be found in [49].

When the source point and the field point locate inside the
same layer, the DGF includes two parts, the primary field
and the contribution from the layer boundary reflection. For
a 3-D uniaxial anisotropic medium, the primary field of GEJ
has the analytical solution and its expression can be found in
Appendix A of [25]. Obviously, GEJ is singular when r = r′.
In the integration equation, when the source point and the field
point are overlapped at the center of a discretized cubic voxel
with the volume of 1V , the mean GEJ for an isotropic medium
can be analytically evaluated via the sphere approximation
method given in the Appendix of [50]. However, the method is
no longer valid for a uniaxial anisotropic medium. Therefore,
we compute the mean GEJ numerically. Specifically speaking,
we can further discretize the cubic voxel into a series of
smaller voxels, place the field point r at the center of the
cubic voxel and place a fictitious source point at the center
of each smaller voxel, and finally compute the mean GEJ
value. Another important issue is the contribution to the mean
GEJ from the singular point r = r′ itself. In a homogeneous
uniaxial medium, only the diagonal elements are not zero and
they are evaluated as [51]

Gxx
E J = G yy
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Gzz
E J =

jωµ0

k21V
·

[
1
3

−
1
5

(
1
νe

− 1
)

+
1
7

(
1
νe

− 1
)2

+ · · ·

]
(A4b)

where k = ω
√

ε0µ0
√

ϵ11µ11, and νe
= ϵ11/ϵ33 is in the

neighborhood of 1. Obviously, (A4) degenerates into

GEJ =
jωµ0

k21V
· diag

{
1
3

1
3

1
3

}
(A5)

when the homogeneous medium becomes isotropic [52].
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